Novel Synthesis of 2,2,2-Trifluoroethyl Compounds from Homoallylic Alcohols: A Copper(I) lodide-initiated Trifluoromethyl–Dehydroxylation Process

Jian-Xing Duan and Qing-Yun Chen*

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai, 200032, China

Benzyl, prop-2-ynyl and allyl chlorodifluoroacetates **3a**, bromodifluoroacetates **3b** or fluorosulfonyldifluoroacetates **3c**, when decomposed in the presence of 1 equivalent of copper(I) iodide at an appropriate temperature in dimethylformamide, gave the corresponding trifluoromethyl derivatives in good to excellent yields. The products can also be obtained directly by ester exchange of XCF_2CO_2Et (X = FSO₂, Cl, Br) **6** and the corresponding alcohols in the presence of KF and Cul. A trifluoromethylation-dehydroxylation mechanism, initiated by Cul, is proposed.

The unique properties of the trifluoromethyl group, 1 e.g. high electronegativity,² stability³ and lipophilicity,⁴ have ensured it an increasingly important role in organic synthesis.5-Although many methods have been reported for the synthesis of trifluoromethyl compounds, most of them are based on the replacement of the halogen atom of alkyl (or aryl) halides by the CF₃ group.⁸ Carboxy⁹ and amino¹⁰ groups apart few reports for the conversion of other groups (e.g. hydroxy) into CF_3 have appeared. Thus, the displacement of OH by CF₃ in benzyl alcohols with CF_2Br_2 -Cu-DMF,¹¹ gives low yields of products. In our previous study on the trifluoromethylation of organic halides with methyl halogenodifluoroacetates¹² and fluorosulfonyldifluoroacetate¹³ in the presence of potassium fluoride and copper(I) iodide, we proposed that the reaction occurred by initial attack of iodide ion on the methyl carbon of the methyl esters to yield methyl iodide. Thus, we envisaged that the hydroxy groups in the benzyl and allyl alcohols might be displaced by trifluoromethyl groups via the corresponding esters 3 (XCF₂CO₂R, X = Cl a, Br b, FSO₂ c, R = benzyl, allyl) in good yields. Here we describe these results in detail.

Results and Discussion

Benzyl and allyl esters (XCF₂CO₂R, X = Cl **a**, Br **b**, FSO₂ **c**, R = benzyl, allyl) **3** were found to be easily prepared from the corresponding acid fluorides and alcohols. For example, chlorodifluoroacetyl **1a**, bromodifluoroacetyl **1b**, fluorosulfonyldifluoroacetyl **1c** fluorides, prepared by treatment of ClCF₂CF₂I (for **1a**),¹⁴ BrCF₂CFClBr (for **1b**)¹⁴ and CF₂=CF₂ (for **1c**)¹⁵ with SO₃ at appropriate temperatures, reacted with various benzyl alcohols smoothly in CH₂Cl₂ in the presence of pyridine to give the esters **3** in high yields (Scheme 1). The

$$\begin{array}{c|c} XCF_2COF + ROH + Py \longrightarrow XCF_2CO_2R + Py HF \\ 1 & 2 & 3 \end{array}$$

$$\begin{array}{c|c} X & ROH \\ Ia Cl & a PhCH_2OH & g m-NO_2C_6H_4CH_2OH \\ Ib Br & b p-ClC_6H_4CH_2OH & h p-NO_2C_6H_4CH_2OH \\ Ic FSO_2 & c m-ClC_6H_4CH_2OH & i CH_2-CHCH_2OH \\ d o-Cl-C_6H_4CH_2OH & i CH_2-CHCH_2OH \\ e p-MeC_6H_4CH_2OH & k CH \equiv CCH_2OH \\ f m-MeC_6H_4CH_2OH & i p-BrC_6H_4CH_2OH \end{array}$$

results are listed in Table 1. For *p*- and *m*-methylbenzyl alcohols (2e and 2f) it was necessary to employ a lower reaction temperature (-10 °C), as it was for allyl alcohols 2i and 2j (-20 °C).

Table 1	Reaction of the alcohol 2 with 1 $[2:1 = 1:1 \pmod{3}]$ in
CH_2Cl_2	in the presence of pyridine for 20 min

Entry	1	2	T/⁰C	Yield 3(%) ^a
1	la	2a	0-10	91
2 3	1a	2b	0-10	93
3	1a	2c	0-10	92
4	la	2d	0-10	94
5	la	2e	-10	88
6	1a	2f	- 10	93
7	la	2g	0–10	83
8	1a	2h	010	77
9	la	2i	-20	73
10	1a	2j	-20	74
11	1a	2k	0-10	88
12	1b	2a	0-10	94
13	1b	2b	010	92
14	1b	2c	010	95
15	1b	2d	010	93
16	1b	2e	-10	94
17	1b	2f	-10	92
18	1b	2g	010	82
19	1b	2h	0-10	79
20	1b	2i	-20	75
21	1b	2j	-20	77
22	lc	2a	0-10	87
23	1c	2b	0-10	85
24	lc	2c	0-10	83
25	1c	2d	0-10	78
26	lc	2e	-10	83
27	le	2f 2-	-10	75 72
28	1c	2g	0-10	73 75
29 20	1c	2h 2i	0-10 20	75
30	le	2i	-20	74 76
31	lc	2j	-20	76 82
32	1c	21	0-10	82

^a Isolated yield based on 2.

Unlike the reaction of saturated alcohols with 1c,¹⁵ unless 1 equivalent of pyridine was present to neutralize the hydrogen fluoride produced, unidentified white solids were obtained.

Treatment of the esters 3a and 3b with copper(1) iodide in the presence of anhydrous potassium fluoride in N,N-dimethyl-formamide (DMF) at 75–110 °C for 4–12 h gave upon work-up, the corresponding trifluoromethylated compounds in good yields together with a little alkyl fluoride RF (Scheme 2). The results are listed in Table 2.

Treatment of the ester 3c with copper(1) iodide in DMF at 50–70 °C for 4–9 h, afforded the corresponding trifluoromethylated compounds 4 in good yields (Scheme 3, Table 3) together with a little (typically 0–3%) alkyl fluoride.

 $\begin{array}{c} \text{XCF}_2\text{CO}_2\text{R} + \text{KF} \xrightarrow{\text{CuI}} & \text{RCF}_3 + \text{CO}_2 + \text{KX} + \text{RF}\\ 3 & 4 & 5 \end{array}$ R 3a Cl a PhCH₂ g m-NO₂C₆H₄CH₂ **b** p-ClC₆H₄CH₂ **c** m-ClC₆H₄CH₂ h p-NO₂C₆H₄CH₂ i CH₂=CHCH₂ 3b Br **d** o-ClC₆H₄CH₂ **e** p-MeC₆H₄CH₂ i PhCH=CHCH k CH≡CCH₂ f m-MeC₆H₄CH₂ Scheme 2 $\begin{array}{ccc} FSO_2CF_2CO_2R & \stackrel{Cul}{\longrightarrow} & RCF_3 + CO_2 + SO_2 + RF\\ 3c & 4 & 5 \end{array}$ R a PhCH₂ g m-NO₂C₆H₄CH₂ **b** p-ClC₆H₄CH₂ **c** m-ClC₆H₄CH₂ **d** o-ClC₆H₄CH₂ h p-NO₂C₆H₄CH₂ i CH₂=CHCH₂ j PhCH=CHCH, e p-MeC₆H₄CH₂ k CH≡CCH, f m-MeC₆H₄CH₂ I p-BrC₆H₄CH₂

Table 2 Reaction of **3a** and **3b** with potassium fluoride in the presence of copper(1) iodide (3:KF:CuI = 1:1:1) in DMF

Entry	3	t/h	<i>T</i> /°C	Yield 4(%) ^a	Yield 5(%) ^{<i>a</i>}
1	3aa	10	100	59	4
2	3ab	10	100	62 ^{<i>b</i>}	4
3	3ac	10	100	53 ^b	4
4	3ad	12	100	48 ^b	4
5	3ae	10	100	65	3
6	3af	10	100	68	3
7	3ag	12	110	47	6
8	3ah	12	110	51	4
9	3ai	5	100	78	2°
10	3aj	5	100	81 ^d	2°
11	3ak	4	100	71 °	3°
12	3ba	8	80	68	2°
13	3bb	8	80	64 ^b	4 ^c
14	3bc	8	80	65 <i>°</i>	3°
15	3bd	10	80	58 ^b	2 °
16	3be	7	80	71	4°
17	3bf	8	80	69	3°
18	3bg	8	85	58	4°
19	3bh	9	85	53	4°
20	3bi	8	70	89	0
21	3bj	4	70	87ª	2°
22	3aa	10	100	0 ^{<i>f</i>}	12°

^{*a*} Isolated yields based on 3. ^{*b*} Only monotrifluoromethylated product was obtained. ^{*c*} Determined by ¹⁹F NMR based on 3. ^{*d*} Only PhCH=CHCH₂CF₃ was isolated. ^{*e*} Only CH₂=C=CHCF₃ was isolated. ^{*f*} In the absence of copper iodide.

Although the fluoride ion could be generated from difluorocarbene and DMF¹⁶ in the case of **3a** and **3b**, the presence of potassium fluoride was necessary in order to obtain higher yields of the products; in its absence only very low yields (*e.g.* 10% for **3ba**) of the trifluoromethylated derivatives were obtained. For **3c**, the addition of potassium fluoride had no influence on the yields. As evidenced by the lack of reaction when hexamethylphosphoric triamide (HMPA) replaced DMF, the solvent employed also played an important role in the reaction.

The gases evolved from the reaction mixture were identified as CO_2 , SO_2 (for $FSO_2CF_2CO_2R$) and a small amount of HCF₃ by GC-MS. Also benzyl and allylic fluoride 5 (0-10%) were separated. No $XCF_2H[X = Cl$ (for 3a), Br (for 3b), and FSO_2 (for 3c)] were detected.

Table 3 Reaction of 3c in the presence of copper(1) iodide [3c:CuI = 1:1 (molar ratio)] in DMF

Entry	3	t/h	<i>T</i> /°C	Yield 4(%)
1	3ca	7	60	71
2	3cb	8	60	75 ^{<i>b</i>}
3	3cc	8	60	69 ^b
4	3cd	9	65	63 ^b
5	3ce	6	60	75
6	3cf	6	60	73
7	3cg	7	70	60
8	3ch	8	70	58
9	3ci	4	50	85
10	3cj	4	50	90°
11	3cl	8	70	72 <i>°</i>
12	3ca	7	60	0 ^d

^a Isolated yields based on 3c, in addition a small amount of 5 was formed. ^b Only monotrifluoromethylated product was obtained. ^c Only PhCH=CHCH₂CF₃ was detected. ^d In the absence of CuI.

As expected, only monotrifluoromethylated products were obtained when chloro- and bromo-benzyl esters 3 were used, since chlorine and bromine were inert to the reaction conditions (entries 2, 3, 4, 12, 13 and 14 in Table 2 and entries 2, 3 and 4 in Table 3). Cinnamyl esters **3aj**, **3bj** and **3cj** underwent Culinitiated decomposition to give the normal trifluoromethyldehydroxylated products, whereas the prop-2-ynyl ester **3k** afforded a rearranged product $CH_2=C=CHCF_3^{17}$ (entry 11 in Table 2).

The data in Tables 2 and 3 indicate that allylic esters were more reactive and, consequently, gave higher yields of product than benzyl esters. For example, cinnamyl bromodifluoroacetate gave the corresponding trifluoromethylated product in 87% yield in 4 h, whilst the benzyl ester, under similar conditions, afforded 2,2,2-trifluoroethylbenzene in only 68% yield after 8 h (entries 21 and 12 in Table 2). Such results demonstrate that steric hindrance influenced the reactivity of the substrates. For example, 2-chlorobenzyl esters, **3ad**, **3bd** and **3cd**, decomposed more slowly than 4-chlorobenzyl esters, **3ab**, **3bb** and **3cb**, affording lower yields of product (entries 2, 4, 13 and 15 in Table 2 and entries 2 and 4 in Table 3).

We propose a mechanism similar to that reported earlier for the trifluoromethylation of organic halides with methyl esters (XCF_2CO_2Me) .^{12,13} Thus, initially, copper(I) iodide attack on the ester yields alkyl iodide and XCF_2CO_2Cu , although since no HCF_2X was detected, the carbanion $XCF_2^$ may not be produced but, rather, the copper salt formed may decompose in a concerted manner to give difluorocarbene; this then combines with the fluoride ion added (for **3a** and **b**) or generated *in situ* (for **3c**) to form the trifluoromethide ion. In the presence of copper(I) iodide, the equilibrium readily shifts to the right forming trifluoromethylcopper or its complex, which then reacts with the alkyl iodide formed initially to afford the final product, Scheme 4.

$$XCF_{2}CO_{2}R + CuI \longrightarrow RI + XCF_{2}CO_{2}Cu$$
$$XCF_{2}CO_{2}Cu \longrightarrow X^{-} (or F^{-} + SO_{2}) + CO_{2} + CF_{2}:$$
$$CF_{2}: + F^{-} \rightleftharpoons CF_{3}^{-}$$
$$CF_{3}^{-} + CuI \longrightarrow CF_{3}Cu (or CF_{3}CuI^{-})$$
$$CF_{3}Cu (or CF_{3}CuI^{-}) + RI \longrightarrow RCF_{3} + CuI + I^{-}$$
$$Scheme 4$$

The steric effect may be explained in terms hindrance by the *ortho* substituent on decomposition of 3 in the first step.

Table 4 Reaction of 2 with 6 in the presence of KF and CuI in DMF (2:6 = 1:2)

Entry	2	6	Time (h)	<i>T</i> /°C	Yield 4(%) ^a	
1	2a	6a	10	100	43	
2	2i	6a	6	100	71	
3	2j	6a	7	100	64	
4 ^{<i>b</i>}	21	6a	10	100	40	
5	2a	6b	8	90	39	
6	2j	6b	10	90	72	
7	2a	6c	9	70	47	
8	2j	6c	7	65	63	

^a Isolated yield based on 2. ^b Only *p*-BrC₆H₄CH₂CF₃ was obtained.

The formation of RF as a by-product may result from nucleophilic attack of the fluoride ion on the esters:

$$XCF_2CO_2R + F^- \longrightarrow RF + CO_2 + CF_2: +X^-$$

Based on the mechanism proposed, it seemed possible that in the presence of some base catalysts ester exchange could take place *in situ* and hence a direct displacement of the hydroxy groups in benzyl and allylic alcohols by the trifluoromethyl moiety would occur. Interestingly, it was found that potassium fluoride serves well the dual purpose of being a base catalyst and a fluoride ion source in the reaction. Ethyl halogeno- and fluorosulfonyl-difluoroacetates (XCF₂CO₂Et, X = FSO₂, Br, Cl) **6*** were found to be suitable for the ester exchange.

Treatment of benzyl and allyl alcohols with $\mathbf{6}$ in the presence of potassium fluoride and copper(1) iodide in DMF at appropriate temperatures for 6–10 h gave the corresponding trifluoromethylated products in moderate to good yields (Scheme 5), although slightly lower than those by the indirect methods mentioned above. The results are listed in Table 4.

$$\begin{array}{cccc} \operatorname{ROH} + \operatorname{XCF_2CO_2Et} + \operatorname{KF} & \stackrel{\operatorname{Cul}}{\longrightarrow} & \operatorname{RCF_3} + \operatorname{CO_2} + \operatorname{EtOH} \\ \mathbf{2} & \mathbf{6} & \mathbf{4} \\ & & \mathbf{4} \\ & & \mathbf{2} & \mathbf{6} & \mathbf{2} \\ & & & \mathbf{2} & \operatorname{PhCH_2} & \mathbf{6} & \mathbf{6} & \operatorname{Cl} \\ & & & & \mathbf{2} & \operatorname{CH_2=CHCH_2} & \mathbf{6} & \mathbf{6} & \operatorname{Br} \\ & & & & & \mathbf{2} & \operatorname{PhCH=CHCH_2} & \mathbf{6} & \operatorname{FSO_2} \\ & & & & & \mathbf{2} & \operatorname{PhCH=CHCH_2} & \mathbf{6} & \operatorname{FSO_2} \\ & & & & & \mathbf{2} & \operatorname{PhCH=CHCH_2} & \mathbf{5} \\ & & & & & & \operatorname{Scheme} \mathbf{5} \end{array}$$

The presence of potassium fluoride was essential to the reaction since in its absence ester exchange failed to occur, although 6 decomposed completely during 5–10 h; the expected products were not, however, detected. Copper(I) iodide also played an important role in the reaction. Although ester exchange was detected without CuI (by TLC), no decarboxylation of the ester formed took place.

The formation of 3 via ester exchange may be ascribed to nucleophilic attack on the ethyl ester 6 by RO^- which results from the interaction of KF with the alcohols (Scheme 6). The benzyl, allyl and prop-2-ynyl esters 3 then decomposed in the presence of copper(I) iodide to give the final products following the mechanism described earlier.

Possibly, because of incomplete ester exchange, the yields of the 'one-pot' reaction are not as high as those of the indirect procedure.

Experimental

All b.p.s are uncorrected. IR spectra were obtained on a Shimadzu-440 model instrument as KBr pellets for solid

* Use of methyl esters gave the methyl alkyl ethers as the main products.

$$ROH + KF \rightleftharpoons ROK + HF$$

$$ROK + XCF_2CO_2Et(6) \longrightarrow XCF_2CO_2R + EtOK$$

$$XCF_2CO_2R + CuI \longrightarrow RI + XCF_2CO_2Cu$$

$$XCF_2CO_2Cu \longrightarrow X^- (or F^- + SO_2) + CO_2 + CF_2:$$

$$CF_2: + F^- \rightleftharpoons CF_3^-$$

$$CF_3^- + CuI \longrightarrow CF_3Cu (or CF_3CuI^-)$$

$$CF_3Cu (or CF_3CuI^-) + RI \longrightarrow RCF_3 + CuI + I^-$$
Scheme 6

samples and as films for liquid samples. ¹H NMR spectra were obtained on EM-360A (60 MHz) and XL-200 (200 MHz) NMR spectrometers. [²H]Chloroform was used as solvent with tetramethylsilane as external reference. ¹⁹F NMR spectra were obtained on an EM-360L (60 MHz) NMR spectrometer with CFCl₃ as external reference and chemical shifts in ppm were positive upfield. J Values are given in Hz. Mass spectra were recorded with a GC-MS-4021 mass spectrometer. Silica gel (40 μ m) was used for column chromatography. All reagents were purified prior to use. CH₂Cl₂ was dried with molecular sieves and DMF with CaH₂.

Fluorosulfonyldifluoroacetyl fluoride was prepared according to ref. 15; bromodifluoroacetyl fluoride and chlorodifluoroacetyl fluoride were synthesized according to ref. 14. The ethyl esters $\mathbf{6}$ were prepared based on ref. 15.

Typical Procedure for the Preparation of Compound **3aa**.—To a 50 cm³ three-necked round-bottomed flask equipped with a stirrer at 0–10 °C, freshly distilled CH₂Cl₂ (30 cm³), pyridine (0.8 g 10 mmol) and benzyl alcohol (1.1 g, 10 mmol) were added. ClCF₂COF (1.3 g, 10 mmol) was then added through a gas inlet over 10 min to the reaction mixture which was then stirred for a further 10 min at 10 °C. After completion of the reaction, the solution was washed with water until neutral (pH 7). The organic layer was then dried (Na₂SO₄) and the CH₂Cl₂ was distilled off to afford a crude product which was subjected to chromatography using light petroleum–diethyl ether (10:1) as eluent to give benzyl chlorodifluoroacetate **3aa** (2.0 g, 91%).

Without the addition of pyridine, 1a reacted with 2a under the conditions described above to give a white solid, which was insoluble in acetone and had a molecular weight of 800–1000. The product was not studied further.

Benzyl chlorodifluoroacetate **3aa**. B.p. 147–149.5 °C/20 mmHg (Found: C,48.7; H, 3.2: F, 17.1. Calc. for C₉H₇ClF₂O₂: C, 48.98; H, 3.17; F, 17.23%); v_{max}/cm^{-1} 1772, 1600, 1351, 1272 and 1150; $\delta_{\rm H}$ 4.9 (s, 2 H) and 6.8 (s, 5 H); $\delta_{\rm F}$ –66 (s, 2 F); m/z 220 [M(³⁵Cl)⁺, 23%], 222 [M(³⁷Cl)⁺, 6.1], 85 (CF₂³⁵Cl⁺, 4.3), 87 (CF₂³⁷Cl⁺, 1.1) and 91 (C₆H₅CH₂⁺, 100).

4-Chlorobenzyl chlorodifluoroacetate **3ab**. Oil (Found: C, 42.1; H, 2.3. Calc. for $C_9H_6Cl_2F_2O_2$: C, 42.35; H, 2.35%); v_{max}/cm^{-1} 1778, 1490, 1230, 1087, 1018, 802 and 630; δ_H 5.15 (s, 2 H) and 7.1 (s, 4 H); δ_F -66.3 (s, 2 F); m/z 254 [M(³⁵Cl)⁺, 27.2%)], 256 [M(³⁷Cl, ³⁵Cl)⁺, 17.7], 258 [M(2³⁷Cl)⁺, 2.1], 85 [³⁵ClCF₂⁺, 5.4], 87 [³⁷ClCF₂⁺, 1.6], 125 (³⁵ClC₆H₄CH₂⁺, 100) and 127 (³⁷ClC₆H₄CH₂⁺, 30.4).

3-Chlorobenzyl chlorodifluoroacetate **3ac**. Oil (Found: C, 42.2: H, 2.5. Calc. for C₉H₆Cl₂F₂O₂: C, 42.35; H, 2.35%); v_{max} cm⁻¹ 1772, 1564, 1472, 1235, 1108, 1043, 1010, 857, 775 and 647; $\delta_{\rm H}$ 5.12 (s, 2 H) and 7.12 (m, 4 H); $\delta_{\rm F}$ - 66 (s, 2 F); m/z 254 [H(³⁵Cl₂)⁺, 36.8%], 256 [M(³⁷Cl, ³⁵Cl)⁺, 23.8], 258 [M(2³⁷Cl)⁺, 2.1], 85 (³⁵ClCF₂⁺, 2.9), 125 (³⁵ClC₆H₄CH₂⁺, 100) and 127 (³⁷ClC₆H₄CH₂⁺, 32.8).

2-Chlorobenzyl chlorodifluoroacetate 3ad. Oil (Found: C,

42.2; H, 2.25. Calc. for $C_9H_6Cl_2F_2O_2$: C, 42.35; H, 2.35%); v_{max}/cm^{-1} 1774, 1567, 1480, 1260, 1238, 1168, 1011 and 746; δ_H 5.2 (s, 2 H) and 6.83–7.3 (m, 4 H); δ_F – 66.3 (s, 2 F); m/z 254 [M($^{35}Cl_2$)⁺, 29.7%], 256 [M(^{37}Cl , ^{35}Cl)⁺, 19.3], 258 [M (^{237}Cl)⁺, 3.1], 125 ($^{35}ClC_6H_4CH_2$ ⁺, 100), 127 ($^{37}ClC_6H_4$ -CH₂⁺, 31.8), 113 ($^{35}ClCF_2CO^+$, 5.7) and 115 ($^{37}ClCF_2CO^+$, 1.4).

4-Methylbenzyl chlorodifluoroacetate **3ae**. Oil (Found: C, 51.3, H, 3.9. Calc. for $C_{10}H_9ClF_2O_2$: C, 51.17; H, 3.84%); v_{max}/cm^{-1} 1768, 1272, 1253 and 1150; δ_H 2.29 (s, 3 H), 5.18 (s, 2 H) and 6.92 (s, 4 H); δ_F -66 (s, 2 F); m/z 234 [M(³⁵Cl)⁺ 43.1%), 236 [M(³⁷Cl)⁺, 12.8] and 105 (CH₃C₆H₄CH₂⁺, 100).

3-Methylbenzyl chlorodifluoroacetate **3af**. Oil (Found: C, 51.3; H, 3.8. Calc. for $C_{10}H_9ClF_2O_2$: C, 51.7; H, 3.84%) v_{max}/cm^{-1} 1771, 1272, 1251 and 1150; δ_H 2.31 (s, 3 H), 5.15 (s, 2 H) and 6.89 (s, 4 H); -66.1 (s, 2 F); m/z 234 [M(³⁵Cl)⁺ 32.7%], 236 [M(³⁷Cl)⁺, 9.2] and 105 (CH₃C₆H₄CH₂⁺, 100).

3-Nitrobenzyl chlorodifluoroacetate **3ag**. Oil (Found: C, 40.5; H, 2.3; F, 14.1. Calc. for C₉H₆ClF₂NO₄: C, 40.68. H, 2.26; F, 14.31%); v_{max} /cm⁻¹ 1775, 1600, 1277, 1252, 1147 and 1082; δ_{H} 5.15 (s, 2 H) and 7.38–8.0 (m, 4 H); δ_{F} – 66.8 (s, 2 F); *m*/*z* 265 [M(³⁵Cl)⁺, 31.9%], 267 [M(³⁷Cl)⁺, 8.9], 136 (NO₂C₆H₄CH₂⁺, 100) and 46 (NO₂⁺, 1.3).

4-Nitrobenzyl chlorodifluoroacetate **3ah**. Oil (Found: C, 40.5; H, 2.2. Calc. for C₉H₆ClF₂NO₄: C, 40.68; H, 2.26%); v_{max}/cm^{-1} 1778, 1603, 1271, 1254, 1147 and 1023; $\delta_{\rm H}$ 5.28 (s, 2 H), 7.6 (d, J 8.3, 2 H) and 8.24 (d, J 8.3, 2 H); $\delta_{\rm F}$ -66.1 (s, 2 F); m/z 265 [M(³⁵Cl)⁺, 29.2%], 267 [M(³⁷Cl)⁺, 8.2] and 136 (NO₂C₆H₄CH₂⁺, 100).

Allyl chlorodifluoroacetate **3ai**. B.p. 109–112 °C/760 mmHg (Found: C, 35.4; H, 3.2; F, 22.1. Calc. for C₅H₅ClF₂O₂: C, 35.19; H, 3.04; F, 22.28%); $v_{\text{max}}/\text{cm}^{-1}$ 1780, 1273, 1252 and 1153; δ_{H} 4.9 (d, J7.3, 2 H), 5.43 (dd, J7.1, 5.6, 1 H), 5.71 (m, 1 H) and 6.02 (m, 1 H); δ_{F} – 66 (s, 2 F); m/z 170 [M(³⁵Cl)⁺, 21%], 172 [M(³⁷Cl)⁺, 5.9] and 41 (C₃H₅⁺, 100).

Cinnamyl chlorodifluoroacetate **3aj**. Oil (Found: C, 53.8; H, 3.71. Calc. for $C_{11}H_9ClF_2O_2$: C, 53.55; H, 3.65%); v_{max}/cm^{-1} 1769, 1250, 1187 and 1084; δ_H 5.1 (d, J 7.1, 2 H), 6.3 (dt, J 14.7, 7.1, 1 H), 6.7 (d, J 14.7, 1 H) and 7.21 (s, 5 H); δ_F – 66.3 (s, 2 F); m/z 246 [M(³⁵Cl)⁺, 36.7%], 248 [M(³⁷Cl)⁺, 10.8] and 117 ($C_6H_5CH=CHCH_2^+$, 100).

Prop-2-*ynyl* chlorodifluoroacetate **3ak**. B.p. 80–82.5 °C/100 mmHg (Found: M⁺, 168.5284. Calc. for C₅H₃ClF₂O₂: *M*, 168.5275); v_{max} /cm⁻¹ 1772, 1270, 1109 and 1087; $\delta_{\rm H}$ 2.28 (s, 1 H) and 4.87 (s, 2 H); $\delta_{\rm F}$ –66 (s, 2 F); *m/z* 168 [M(³⁵Cl)⁺, 21.6%), 170 [M(³⁷Cl)⁺, 5.9] and 39 (C₃H₃⁺, 100).

Benzyl bromodifluoroacetate **3ba**. Oil (Found: C, 40.9; H, 2.6. Calc. for C₉H₇BrF₂O₂: C, 40.76; H, 2.64%); ν_{max}/cm^{-1} 3030, 1764, 1600, 1350, 1280 and 1150; $\delta_{\rm H}$ 4.9 (s, 2 H) and 6.8 (s, 5 H); $\delta_{\rm F}$ - 62 (s, 2 F); m/z 264 [M(⁷⁹Br)⁺, 53.1%], 266 [M(⁸¹Br)⁺, 52.9], 129 (CF₂⁷⁹Br⁺, 3.2), 131 (CF₂⁸¹Br⁺, 3.2) and 91 (C₆H₅CH₂⁺, 100).

4-Chlorobenzyl bromodifluoroacetate **3bb**. Oil (Found: C, 35.9; H, 1.9. Calc. for $C_9H_6BrClF_2O_2$: C, 36.06; H, 2.00%); v_{max}/cm^{-1} 1760, 1490, 1230, 1092, 1011, 802 and 630; δ_H 5.2 (s, 2 H) and 7.1 (m, 4 H); δ_F – 62.1 (s, 2 F); m/z 298 [M(^{35}Cl , ^{79}Br)⁺, 34.2%], 300 [M(^{37}Cl + ^{79}Br or ^{35}Cl + ^{81}Br)⁺, 45.6], 258 [M(^{37}Cl , ^{81}Br)⁺, 11.2], 157 ($^{79}BrCF_2CO^+$, 7.4), 159 ($^{81}BrCF_2$ -CO⁺, 7.4), 125 ($^{35}ClC_6H_4CH_2^+$, 100) and 127 ($^{37}ClC_6H_4$ -CH₂⁺, 33.1).

3-Chlorobenzyl Bromodifluoroacetate **3bc**. Oil (Found: C, 35.9; H, 2.1; F, 12.8. Calc. for $C_9H_6BrClF_2O_2$: C, 30.06; H, 2.00; F, 12.69%); v_{max}/cm^{-1} 1763, 1568, 1470, 1235, 1092, 1010, 1080, 857, 773 and 642; δ_H 5.1 (s, 2 H) and 7.08 (s, 4 H); δ_F -62 (s, 2 F); m/z 298 [M(³⁵Cl, ⁷⁹Br)⁺, 36.7%], 300 [M(³⁷Cl + ⁷⁹Br, ³⁵Br)⁺, 49.1], 302 [M(³⁷Cl, ⁸¹Br)⁺, 11.4], 157 (⁷⁹BrCF_2CO⁺, 6.9), 159 (⁸¹BrCF_2CO⁺, 6.9), 125 (³⁵ClC₆H₄CH₂⁺, 100) and 127 (³⁷ClC₆H₄CH₂⁺, 31.1).

2-Chlorobenzyl bromodifluoroacetate **3bd**. Oil (Found: C, 36.2; H, 1.9; F, 12.7. Calc. for $C_9H_6BrClF_2O_2$: C, 36.06; H, 2.00; F, 36.23%) v_{max}/cm^{-1} 1771, 1571, 1480, 1260, 1238, 1171, 1011 and 750; δ_H 5.2 (s, 2 H) and 6.9–7.3 (m, 4 H); δ_F – 62.5 (s, 2 F); m/z 298 [M(^{35}Cl , ^{79}Br)⁺, 32.7%], 300 [M(^{37}Cl + ^{79}Br and ^{35}Cl + ^{81}Br)⁺, 43.7], 302 [M(^{37}Cl , ^{81}Br)⁺ 10.4], 157 ($^{79}BrCF_2CO^+$, 6.3), 159 ($^{81}BrCF_2CO^+$, 6.3), 125 ($^{35}ClC_6^-H_4CH_2^+$, 31.8).

4-Methylbenzyl bromodifluoroacetate **3be**. Oil (Found: M⁺, 279.0816. Calc. for C₁₀H₉BrF₂O₂: *M*, 279.0809); v_{max}/cm^{-1} 1763, 1272, 1250 and 1153; $\delta_{\rm H}$ 2.29 (s, 3 H), 5.1 (s, 2 H) and 6.9 (s, 4 H); $\delta_{\rm F}$ -62 (s, 2 F); m/z 278 [M(⁷⁹Br)⁺ 58.2%], 280 [M(⁸¹Br)⁺, 58.1] and 105 (CH₃C₆H₄CH₂⁺, 100).

3-Methylbenzyl bromodifluoroacetate **3bf**. Oil (Found: C, 43.1; H, 3.2. Calc. for $C_{10}H_9BrF_2O_2$: C, 40.1; H, 3.22%); v_{max}/cm^{-1} 1771, 1272, 1250 and 1155; δ_H 2.29 (s, 3 H), 5.1 (s, 2 H) and 6.9 (s, 4 H); δ_F -62 (s, 2 F); m/z 278 [M(⁷⁹Br)⁺, 49.2], 280 [M(⁸¹Br)⁺, 49.0] and 105 (CH₃C₆H₄CH₂⁺, 100).

3-Nitrobenzyl bromodifluoroacetate **3bg**. Oil (Found: H, 1.9; F, 12.0. Calc. for C₉H₆BrF₂NO₄: H, 1.94; F, 12.26%); ν_{max} /cm⁻¹ 1773, 1600, 1275, 1257 and 1147; $\delta_{\rm H}$ 5.15 (s, 2 H) and 7.38–8.0 (m, 4 H); $\delta_{\rm F}$ –62 (s, 2 F); *m*/z 209 [M(⁷⁹Br)⁺, 32%], 311 [M(⁸¹Br)⁺, 32.2] and 136 (NO₂C₆H₄CH₂⁺, 100).

4-Nitrobenzyl bromodifluoroacetate **3bh**. Oil (Found: H, 2.0; F, 12.5. Calc. for C₉H₆BrF₂NO₄: H, 1.94; F, 12.26%); v_{max} /cm⁻¹ 1773, 1600, 1275, 1257 and 1147; $\delta_{\rm H}$ 5.23 (s, 2 H), 7.60 (d, *J* 8, 2 H) and 8.21 (d, *J* 8, 2 H); $\delta_{\rm F}$ - 62.1 (s, 2 F); *m/z* 309 [M(⁷⁹Br)⁺, 32%), 311 [M(⁸¹Br)⁺, 32.2] and 136 (NO₂C₆H₄CH₂⁺, 100).

Allyl bromodifluoroacetate **3bi**. B.p. 122–124 °C/760 mmHg (Found: M⁺, 214.9953, Calc. for C₅H₅BrF₂O₂: *M*, 214.9941); v_{max} /cm⁻¹ 1780, 1273, 1252 and 1153; δ_{H} 4.94 (d, *J* 7.1, 2 H), 5.42 (dd, *J* 7.3, 5.4, 1 H), 5.72 (dd, *J* 14.1, 5.4, 1 H) and 6.02 (m, 1 H); δ_{F} -62 (s, 2 F); *m*/*z* 214 [M(⁷⁹Br)⁺, 21%], 216 [M(⁸¹Br)⁺, 21.3] and 41 (C₃H₅⁺, 100).

Cinnamyl bromodifluoroacetate **3bj**. Oil (Found: C, 45.17; H, 3.14. Calc. for $C_{11}H_9BrF_2O_2$: C, 45.36; H, 3.09%); v_{max}/cm^{-1} 1772, 1250, 1187 and 1063; δ_H 5.1 (d, J 7.1, 2 H), 6.3 (dt, J 14.7, 7.1, 1 H), 6.7 (d, J 14.7, 1 H) and 7.21 (s, 5 H); δ_F – 62.3 (s, 2 F); m/z 290 [M(⁷⁹Br)⁺, 23.6%], 292 [M(⁸¹Br)⁺, 23.6] and 117 (C₆H₅CH=CHCH₂⁺, 100).

Benzyl fluorosulfonyldifluoroacetate **3ca**. Oil (Found: M⁺, 268.2078. Calc. for C₉H₇F₃O₄S: M^+ , 268.2071) ν_{max}/cm^{-1} 1764, 1600, 1468, 1278, 1150 and 1063; $\delta_{\rm H}$ 5.0 (s, 2 H) and 6.8 (s, 5 H); $\delta_{\rm F}$ 40 (s, 1 F) and -107.1 (s, 2 F); m/z 268 (M⁺, 23.1%) and 91 (C₆H₅CH₂⁺, 100).

4-Chlorobenzyl fluorosulfonyldifluoroacetate **3cb**. Oil (Found: M^+ , 302.6531. Calc. for C₉H₆ClF₃SO₄: *M*, 302.6522); $\nu_{max}/$ cm⁻¹ 1760, 1490, 1468, 1230, 1092, 1011, 802 and 630; δ_{H} 5.2 (s, 2 H) and 7.1 (s, 4 H); δ_{F} 40.1 (s, 1 F) and -107.1 (s, 2 F); *m*/z 302 [M(³⁵Cl)⁺, 17.2%], 256 [M(³⁷Cl)⁺, 5.3], 125 [M(³⁵ClC₆H₄CH₂⁺, 100] and 127 (³⁷ClC₆H₄CH₂⁺, 32.8).

3-Chlorobenzyl fluorosulfonyldifluoroacetate **3cc**. Oil: (Found: M^+ , 302.6516. Calc. for C₉H₆ClF₃SO₄: *M*, 302.6522); v_{max} /cm⁻¹ 1778, 1571, 1480, 1471, 1260, 1238, 1171, 1011 and 750; $\delta_{\rm H}$ 5.1 (s, 2 H) and 7.1 (s, 4 H); $\delta_{\rm F}$ 40.4 (s, 1 F) and -106.4 (s, 2 F); *m*/*z* 302 [M(³⁵Cl)⁺, 19.7%], 304 [M(³⁷Cl)⁺, 6.2], 125 (³⁵ClC₆H₄-CH₂⁺, 100) and 127 (³⁷ClC₆H₄CH₂⁺, 32.7).

2-Chlorobenzyl fluorosulfonyldifluoroacetate **3cd**. Oil (Found: M^+ , 302.6534. Calc. for C₉H₆ClF₃SO₄: *M*, 302.6522); v_{max} cm⁻¹ 1778, 1571, 1480, 1471, 1260, 1238, 1172, 1011 and 750; δ_H 5.2 (s, 2 H) and 6.9–7.3 (m, 4 H); δ_F 40.2 (s, 1 F) and -106.3 (s, 2 F); *m*/*z* 302 [M(³⁵Cl)⁺, 21.5%], 304 [M(³⁷Cl)⁺, 6.8], 125 (³⁵ClC₆-H₄CH₂⁺, 100) and 127 (³⁷ClC₆H₄CH₂⁺, 32.7).

4-Methylbenzyl fluorosulfonyldifluoroacetate **3ce**. Oil (Found: M^+ , 282.2343. Calc. for $C_{10}H_9F_3SO_4$: *M*, 282.2339); v_{max}/cm^{-1} 1763, 1273, 1250, 1153 and 1082; $\delta_H 2.30$ (s, 3 H), 5.1 (s, 2 H) and 6.9 (s, 4 H); δ_F 40.2 (s, 1 F) and -106.4 (s, 2 F); *m/z* 282 (M^+ , 58.1%) and 105 ($CH_3C_6H_4CH_2^+$, 100).

3-Methylbenzyl fluorosulfonyldifluoroacetate **3cf**. Oil (Found: M^+ , 282.2331. Calc. for $C_{10}H_9F_3SO_4$: M, 282.2339); v_{max}/cm^{-1} 1763, 1468, 1272, 1250 and 1153; δ_H 2.29 (s, 3 H), 5.04 (s, 2 H) and 6.58 (s, 4 H); δ_F 40.3 (s, 1 F) and -106.3 (s, 2 F); m/z 282 (M^+ , 58.1%) and 105 ($CH_3C_6H_4CH_2^+$, 100).

3-Nitrobenzyl fluorosulfonyldifluoroacetate **3cg**. Oil (Found: M^+ , 313.2053. Calc. for C₉H₆F₃NSO₆: M^+ 313.2047); $v_{max}/$ cm⁻¹ 1773, 1600, 1469, 1275, 1257, 1147 and 1082; δ_H 5.15 (s, 2 H) and 7.36–8.0 (s, 4 H); δ_F 40.1 (s, 1 F) and – 106.8 (s, 2 F); m/z 313 (M^+ , 43.7%) and 136 (NO₂C₆H₄CH₂⁺, 100).

4-Nitrobenzyl fluorosulfonyldifluoroacetate **3ch**. Oil (Found: M^+ , 313.2042. Calc. for $C_9H_6F_3NSO_6$: *M*, 313.2047); v_{max}/cm^{-1} 1775, 1600, 1468, 1269, 1254, 1147 and 1023; δ_H 5.25 (s, 2 H), 7.6 (d, *J* 6.3, 2 H) and 8.24 (d, *J* 6.3, 2 H); δ_F 40.5 (s, (s, 1 F) and - 106.2 (s, 2 F); *m/z* 313 (M⁺, 27.4%) and 136 (NO₂C₆H₄CH₂⁺, 100).

Allyl fluorosulfonyldifluoroacetate **3ci**. B.p. (decomp.) 80 °C/ 100 mmHg (Found: M⁺, 218.1482. Calc. for C₅H₅F₃O₄S: M, 218.1473); v_{max}/cm^{-1} 1780, 1467, 1273, 1252 and 1153; $\delta_{\rm H}$ 4.9 (d, J7.1, 2 H), 5.38 (dd, J7.1, 4.8, 1 H), 5.7 (dd, J 4.5, 4.8, 1 H) and 6.0 (m, 1 H); $\delta_{\rm F}$ 40.1 (s, 1 F) and -107.1 (s, 2 F); m/z 218 (M⁺, 27.3%) and 41 (C₃H₅⁺, 100).

Cinnamyl fluorosulfonyldifluoroacetate **3cj**. Oil (Found: M⁺, 294.2453. Calc. for $C_{11}H_9F_3O_4S$: *M*, 294.2449); v_{max} /cm⁻¹ 1771, 1473, 1250, 1180 and 1010; δ_H 5.2 (d, *J* 7.2, 2 H), 6.3 (dt, *J* 14.7, 7.2, 1 H), 6.7 (m, 1 H) and 7.21 (s, 5 H); δ_F 40.3 (s, 1 F) and -106.2 (s, 2 F); *m*/*z* 294 (M⁺, 47.1) and 117 ($C_6H_5CH=CHCH_2^+$, 6.8).

4-Bromobenzyl fluorosulfonyldifluoroacetate **3cl**. Oil (Found: M^+ , 347.1038. Calc. for C₉H₆BrF₃SO₄: M^+ 347.1032); ν_{max}/cm^{-1} 1768, 1490, 1468, 1230, 1092, 1011, 802 and 630; $\delta_{\rm H}$ 5.25 (s, 2 H) and 7.1 (s, 4 H); $\delta_{\rm F}$ 40.1 (s, 1 F) and -107.3 (s, 2 F); m/z 346 [M(⁷⁹Br)⁺, 19.2%], 348 [M(⁸¹Br)⁺, 19.2], 169 (⁷⁹BrC₆H₄-CH₂⁺, 100) and 171 (⁸¹BrC₆H₄CH₂⁺, 100).

Typical Procedure for the Preparation of Compounds 4.—To a 50 cm³ three-necked round-bottomed flask, equipped with a stirrer, freshly distilled DMF (30 cm³), dry KF (0.58 g, 10 mmol) and CuI (2.0 g, 10 mmol) were added under nitrogen. The mixture was then heated to 100 °C and PhCH₂OCOCF₂Cl (2.2 g, 10 mmol) was added dropwise to it over 2 h. The solution was heated for a further 6 h. On completion of the reaction, the solution was poured into ice-water (100 cm³) and the mixture was filtered. The residue was separated and the aqueous layer was extracted with diethyl ether (3 × 30 cm³). The combined extracts were then dried (Na₂SO₄) and after removal of the ether, the crude product was subjected to column chromatography using light petroleum as eluent to give 2,2,2-trifluoroethylbenzene **4** (0.94 g, 59%).

2,2,2-*Trifluoroethylbenzene* **4a**. B.p. 116–118 °C/760 mmHg (lit.,¹⁸ 124–126 °C); v_{max} /cm⁻¹ 1278 and 1150; δ_{H} 3.32 (q, J 11.2, 2 H) and 6.8 (s, 5 H); δ_{F} –65.7 (t, J 11.2); *m*/z 160 (M⁺, 23.1%), 91 (C₆H₅CH₂⁺, 100) and 69 (CF₃⁺, 2.3).

4-(2,2,2-*Trifluoroethyl*)*chlorobenzene* **4b**.¹¹ B.p. 80–82 °C/20 mmHg; ν_{max}/cm^{-1} 1260 and 1092; δ_{H} 3.52 (q, J 10.8, 2 H) and 7.1 (m, 4 H); δ_{F} – 65.6 (t, J 10.8); *m*/z 194 [M(³⁵Cl)⁺, 30.8%], 196 [M(³⁷Cl)⁺, 8.3], 125 (³⁵ClC₆H₄CH₂⁺, 100) and 127 (³⁷ClC₆H₄CH₂⁺, 32.1).

3-(2,2,2-*Trifluoroethyl*)chlorobenzene 4c.¹¹ B.p. 92–93.5 °C/ 25 mmHg; v_{max}/cm^{-1} 1568, 1235 and 1102; $\delta_{\rm H}$ 3.58 (q, J 10.6, 2 H) and 7.06 (s, 4 H); $\delta_{\rm F}$ – 65.2 (t, J 10.6); m/z 194 [M(³⁵Cl)⁺, 45.3%], 196 [M(³⁷Cl)⁺, 12.8], 125 (³⁵ClC₆H₄CH₂⁺, 100), 127 (³⁷ClC₆H₄CH₂⁺, 32.5) and 69 (CF₃⁺, 3.5).

2-(2,2,2-*Trifluoroethyl*)chlorobenzene **4d**.¹¹ B.p. 73–75 °C/18 mmHg; ν_{max}/cm^{-1} 1571, 1260, 1238, 1172 and 750; $\delta_{\rm H}$ 3.6 (q, J 10.8, 2 H) and 6.9–7.3 (m, 4 H); $\delta_{\rm F}$ –65.2 (t, J 10.8); m/z 194 [M(³⁵Cl)⁺, 31.5%], 196 [M(³⁷Cl)⁺, 8.7], 125 (³⁵ClC₆H₄CH₂⁺, 100), 127 (³⁷ClC₆H₄CH₂⁺, 32.7) and 69 (5.8).

4-(2,2,2-*Trifluoroethyl*)toluene **4e**.¹⁸ B.p. 128–131 °C/760 mmHg; v_{max}/cm^{-1} 1273, 1250, 1153 and 1082; $\delta_{\rm H}$ 2.3 (s, 3 H), 3.31 (q, J 10.8, 2 H) and 6.9 (s, 4 H); $\delta_{\rm F}$ – 65.7 (t, J 10.8); m/z 174 (M⁺, 47.1%), 105 (CH₃C₆H₄CH₂⁺, 100) and 69 (CF₃⁺, 12.6). 3-(2,2,2-*Trifluoroethyl*)toluene **4f**. B.p. 87–90 °C/90 mmHg

3-(2,2,2-*Trifluoroethyl*)toluene **4f**. B.p. 87–90 °C/90 mmHg (lit., ¹⁸ 37–39 °C/8 mmHg); v_{max}/cm^{-1} 1272, 1275, 1257 and 1147; $\delta_{\rm H}$ 2.29 (s, 3 H), 3.27 (q, J 11.0, 2 H) and 6.9 (s, 4 H); $\delta_{\rm F}$ – 65.3 (t, J 11.0); *m*/z 174 (M⁺, 38.6%), 105 (CH₃C₆H₄CH₂⁺, 100) and 69 (CF₃⁺, 4.3).

3-(2,2,2-*Trifluoroethyl*)*nitrobenzene* **4g**.¹⁹ M.p. 41–42.5 °C; v_{max}/cm^{-1} 1538, 1275, 1257 and 1147; δ_{H} 3.42 (q, J 10.2, 2 H), 7.6 (m, 2 H) and 8.12 (m, 2 H); δ_{F} – 65.2 (t, J 10.8); *m/z* 205 (M⁺, 27.7%) and 136 (NO₂C₆H₄CH₂⁺, 100).

4-(2,2,2-*Trifluoroethyl*)*nitrobenzene* **4h**.¹⁹ M.p. 64.5–66 °C; v_{max}/cm^{-1} 1528, 1269, 1254 and 1147; $\delta_{\rm H}$ 3.50 (q, J 10.3, 2 H), 7.52 (d, J 8.7, 2 H) and 8.21 (d, J 8.7, 2 H); $\delta_{\rm F}$ – 65.0 (t, J 10.3); m/z 205 (M⁺, 27.4%) and 136 (NO₂C₆H₄CH₂⁺, 100).

4,4,4-*Trifluorobut*-1-*ene* **4i**.¹³ B.p. 10–12 °C/760 mmHg; $\delta_{\rm H}$ 3.21 (m, 2 H), 5.3 (dd, J 7.3, 4.8, 1 H), 5.68 (dd, J 14.5, 4.8, 1 H) and 6.0 (m, 1 H); $\delta_{\rm F}$ -65.1 (t, J 10.3); m/z 110 (M⁺, 16.4%), 91 (M⁺ -F, 6.38), 90 (M⁺ - HF, 2.90), 71 (M⁺ - HF - F, 3.96), 69 (CF₃⁺, 17.04) and 41 (M⁺ - CF₃, 100).

1-4,4,4-*Triftuoro*-1-*phenyl-but*-1-*ene* **4**j.¹¹ M.p. 35–37 °C; v_{max}/cm^{-1} 1250 and 1180; δ_{H} 3.2 (m, 2 H), 6.3 (dt, J 14.7, 7.1, 1 H), 6.7 (d, J 14.7, 1 H) and 7.18 (s, 5 H); δ_{F} – 65.1 (t, J 10.7); m/z 186 (M⁺, 52.1%), 117 (M⁺ – CF₃, 100) and 77 (C₆H₅⁺, 6.8).

4,4,4-*Trifluorobuta*-1,2-*diene* **4k**.¹⁷ B.p. 8–10 °C/760 mmHg; $\delta_{\rm H}$ 5.2 (m, 2 H) and 5.36 (m, 1 H); $\delta_{\rm F}$ –63.7 (d, J 10); m/z 108 (M⁺,100%) and 69 (CF₃⁺, 23).

4-(2,2,2-*Trifluoroethyl*)*bromobenzene* **4**I. B.p. 120–123 °C/25 mmHg; (Found: M⁺, 239.0353. Calc. for C₈H₆BrCF₃: *M*, 239.0346); ν_{max} /cm⁻¹ 1266 and 1103; $\delta_{\rm H}$ 3.42 (q, *J* 10.3, 2 H) and 7.16 (m, 4 H); $\delta_{\rm F}$ – 65.6 (t, *J* 10.3); *m*/z 238 [M(⁷⁹Br)⁺, 36.8%], 240 [M(⁸¹Br)⁺, 35.9], 169 (⁷⁹BrC₆H₄CH₂⁺, 100) and 171 (⁸¹BrC₆H₄CH₂⁺, 100).

Typical Procedure for the Direct Trifluoromethylation-dehydroxylation of Alcohols.—To a 50 cm³ three-necked roundbottomed flask, equipped with a stirrer, DMF (30 cm³), KF (0.5 g, 10 mmol), CuI (2.0 g, 10 mmol), **2a** (1.08 g, 10 mmol) and **6a** (3.2 g, 20 mmol) were added under nitrogen. The mixture was then heated to 100 °C for 10 h. On completion of the reaction, the solution was poured into ice-water (100 cm³) and the mixture was filtered and the residue was washed with diethyl ether (3 × 10 cm³). The organic layer was separated and the aqueous layer was extracted with diethyl ether (3 × 30 cm³). The combined organic extracts were then dried (Na₂SO₄) and after removal of the ether, the crude product was subjected to column chromatography using light petroleum as eluent to give **4a** (0.7 g, 43%).

Acknowledgements

We thank Professor Wei-Yuan Huang for his encouragement and the National Natural Science Foundation of China for the financial support of the work.

References

- 1 R. Filler and Y. Kobayashi, Biomedical Aspects of Fluorine Chemistry, Kodansha, Tokyo, 1982.
- 2 H. Oberhammer, J. Fluorine Chem., 1983, 23, 147.
- 3 Organofluorine Chemicals and Their Industrial Applications, ed. R. E. Banks, Ellis Hrwood, Chichester, 1979.
- 4 T. Fujita, Prog. Phys. Org. Chem., 1983, 14, 75; N. Muller, J. Pharm. Sci., 1986, 75, 987; J. A. Miller, M. C. Coleman and R. S. Mathews, J. Org. Chem., 1993, 58, 2637.
- 5 Preparation, Properties and Industrial Applications of Organofluorine

730

- 6 C. D. Poulter, P. L. Wiggins and T. L. Plummer, J. Org. Chem., 1981, 46, 1532.
- 7 D. W. Reynolds, P. E. Cassidy, C. G. Johnson and M. L. Cameron, J. Org. Chem., 1990, 55, 4448.
- 8 For a very recent review, see M. A. McClinton and D. A. McClinton, Tetrahedron, 1992, 48, 6555.
- 9 C.-L. Wang, J. Org. React., 1985, 34, 319; M. Hudlicky, Org. React., 1986, 35, 513; W. R. Hasek, W. C. Smith and V. A. Engelhardt, J. Am. Chem. Soc., 1960, 82, 543; W. J. Middleton, US Pat., 1975, 3 914 265 (Chem. Abstr. 1976, 84, 42 635) and 1976, 3 976 691 (Chem. Abstr. 1977, 86, 29 054g).
- 10 P. Golitz and A. de Meijere, Angew. Chem., Int. Ed. Engl., 1977, 16, 854.
- 11 J. H. Clark, M. A. McClinton and R. J. Blade, J. Fluorine Chem., 1992, 59, 257.
- 12 D.-B. Su, J.-X. Duan and Q.-Y. Chen, *Tetrahedron Lett.*, 1991, 32, 7689; J.-X. Duan, D.-B. Su and Q.-Y. Chen, *J. Fluorine Chem.*, 1993,

61, 279; J.-X. Duan, D.-B. Su, J.-P. Wu and Q.-Y. Chen, J. Fluorine Chem., in the press.

- 13 Q.-Y. Chen and S.-W. Wu, J. Chem. Soc., Chem. Commun., 1989, 705. 14 O. Palenta, F. Liska and A. Posta, Collec. Czech. Chem. Commun.,
- 1970, 35, 1302.
 15 D. C. England, M. A. Dietrich and R. V. Lindsay, J. Am. Chem. Soc., 1960, 82, 6181.
- 16 D. M. Wiemers and D. J. Burton, J. Am. Chem. Soc., 1986, 108, 832 and references cited therein.
- 17 J.-P. Bouillon, C. Maliverney, R. Merenyi and H. G. Viehe, J. Chem. Soc., Perkin Trans. 1, 1991, 2147.
- 18 C. H. Depuy and A. L. Schultz, J. Org. Chem., 1974, 39, 878.
- 19 A. Ando, T. Miki and I. Kumadaki, J. Org. Chem., 1988, 53, 3637.

Paper 3/05126I Received 24th August 1993 Accepted 27th October 1993